A classification of unsplittable-link complements.
نویسندگان
چکیده
منابع مشابه
Principal Congruence Link Complements
Let d be a square-free positive integer, let Od denote the ring of integers in Q( √ −d), and let Qd denote the Bianchi orbifold H/PSL(2,Od). A non-compact finite volume hyperbolic 3-manifold X is called arithmetic if X and Qd are commensurable, that is to say they share a common finite sheeted cover (see [26] Chapter 8 for more on this). If N is a closed orientable 3-manifold and L ⊂ N a link, ...
متن کاملRegular Tessellation Link Complements
By a regular tessellation, we mean any hyperbolic 3-manifold tessellated by ideal Platonic solids such that the symmetry group acts transitively on oriented flags. A regular tessellation has an invariant we call the cusp modulus. For small cusp modulus, we classify all regular tessellations. For large cusp modulus, we prove that a regular tessellations has to be infinite volume if its fundament...
متن کاملIncompressible Surfaces in Link Complements
A link L in S has a 2n-plat projection for some n, as shown in Figure 1, where a box on the i-th row and j-th column consists of 2 vertical strings with aij left-hand half twist; in other words, it is a rational tangle of slope 1/aij. See for example [BZ]. Let n be the number of boxes in the even rows, so there are n − 1 boxes in the odd rows. Let m be the number of rows in the diagram. It was ...
متن کاملHorizontal configurations of points in link complements
For any tangle T (up to isotopy) and integer k ≥ 1 we construct a group F (T ) (up to isomorphism). It is the fundamental group of the configuration space of k points in a horizontal plane avoiding the tangle, provided the tangle is in what we call Heegaard position. This is analogous to the first half of Lawrence’s homology construction of braid group representations. We briefly discuss the se...
متن کاملAngled Decompositions of Arborescent Link Complements
This paper describes a way to subdivide a 3–manifold into angled blocks, namely polyhedral pieces that need not be simply connected. When the individual blocks carry dihedral angles that fit together in a consistent fashion, we prove that a manifold constructed from these blocks must be hyperbolic. The main application is a new proof of a classical, unpublished theorem of Bonahon and Siebenmann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1976
ISSN: 0026-2285
DOI: 10.1307/mmj/1029001720